Using the 100-1008 M ultisegment Envelope Gener ator

0. Before you build...

The following changes should be made. Many of the part values for the components are printed on the legend
for the component side, which sure makes building the board easier, but some of them may have been changed.
Please make the following changes.

Rev A Board

Reference Designator

Legend Says

Should Be

R4

499K

100K

1. Construction Options
There are several ways you can build your 100-1008 envelope generator. Thisis unfortunate in away, because
now you will have to make a decision. On the other hand, | like thingsto have alot of flexibility, so you will be
able to both suffer and enjoy this board.
a. Sequence Length

The length of the sequence is controlled by pins 2, 4 and 6 on connector JP7. Use
the following table to configure the sequence length.

Pin1and?2 Pin3and 4 Pin5and 6 Length
Open Short Short 2
Short Open Short 3
Open Open Short 4
Short Short Open 5
Open Short Open 6
Short Open Open 7
Open Open Open 8

b. Sustain Segment

The sustain segment is the state that the envel ope generator will hold at when the gate signal is true (gate >
1.4votls). Thisfunction is selected by using pins 12, 14 and 16 on connector JP7. Use the following table
below to configure the sustain segment.

Pin1land 12 Pin13 and 14 Pin15and 16 Sustain Segment
Open Short Short 1 (Attack)
Short Open Short 2

Open Open Short 3
Short Short Open 4
Open Short Open 5
Short Open Open 6
Open Open Open 7

One thing you must be careful about isthat if you have a4 segment length, you do not want the sustain to occur
at segment 5, athough, thiswill cause no harm, I am not sure how it will affect the operation...athough, feel
freeto try. Who knows, something interesting may happen. | suspect that it will just go through all the
segments without stopping until it gets to the release segment. However, if the gateis still true, it may just start
all over again until the gate is released.

2. Front panel wiring.

The wiring for the front panel isnot at al critical. If you look at the front panel wiring diagram
supplied, thisisjust one option. Infact, | guess you could say that thisisthe full blown option. Well, maybe
not quite full blown. If you note, on JP7 | have shown athree deck rotary switch to select the sustain level
segment. The length inputs are left floating so the length isfixed at 8. However, you could also add a rotary
switch to the length inputs as well and get alot of flexibility in how the module will work.

Y ou could aso hard wire the length to say just four segments. In this case, you could eliminate half of
the rate pots and half of the level pots. Y ou could also make the sustain segment fixed aswell. If you set it to
say four segmentsin length, you could have the sustain segment be on segment 3. This would make the module
sort of like areal fancy ADSR, or, morelike an ADDSR.

Also, if you have fewer than 8 segments, you can wire up fewer LEDs, if you choose to have LEDs that
is. Onething to note, LEDO (pin 2 of JP2) is awaysthe LED that indicates the Release State. And Led1 (pin 4
of JP2) always indicates the Attack State.

JP1 Pin Definitions. These inputs control the voltage level each segment decays to.

JP1 Pin 2 (AQ) Release Voltage Level
JP1Pin4 (Al Attack Voltage Level
JP1Pin6 (A2) Segment 2 Voltage Level
JP1 Pin 8 (A3) Segment 3 Voltage Level
JP1 Pin 10 (A4) Segment 4 Voltage Level
JP1 Pin 12 (A5) Segment 5 Voltage Level
JP1 Pin 14 (A6) Segment 6 Voltage Level
JP1 Pin 16 (A7) Segment 7 Voltage Level

JP3 Pin Definitions. These inputs control the rate each segment decays at.

JP3 Pin 2 (BO) Release Rate Voltage

JP3Pin4 (Bl) Attack Rate Voltage

JP3Pin6 (B2) Segment 2 Rate Voltage

JP3 Pin 8 (B3) Segment 3 Rate Voltage
JP3 Pin 10 (B4) Segment 4 Rate Voltage
JP3 Pin 12 (B5) Segment 5 Rate Voltage
JP3 Pin 14 (B6) Segment 6 Rate Voltage
JP3 Pin 16 (B7) Segment 7 Rate Voltage

JP4 Pin Definitions.

JP4 Pin 2 (GATE) Gate input to Trigger Envelope Sequence
JP4 Pin 10 (OUT _INV) Inverted Envelope Output

JP4 Pin 12 (+10R) +10 volts for Pots

JP4 Pin 14 (-10R) -10 volts for Pots

JP4 Pin 16 (OUT) Envel ope Output

JP7 Pin Definitions. These inputs control the Length and Sustain segment.

JP7 Pin 2 (LENO) Bit O for Length
JP7 Pin 4 (LEN1) Bit 1 for Length
JP7 Pin 6 (LEN2) Bit 2 for Length
JP7 Pin 12 (SUSD) Bit O for Sustain
JP7 Pin 14 (SUS]) Bit 1 for Sustain
JP7 Pin 16 (SUS2) Bit 2 for Sustain

JP2 Pin Definitions. These outputs are intended to light an LED indicating the current state.

JP2 Pin 2 (LEDOOQ) Release State LED (red) (Anode)

JP2 Pin 4 (LEDO1) Attack State LED (green) (Anode)

JP2 Pin 6 (LEDO2) Segment 2 State LED (yellow) (Anode)
JP2 Pin 8 (LEDO3) Segment 3 State LED (yellow) (Anode)
JP2 Pin 10 (LEDO4) Segment 4 State LED (yellow) (Anode)
JP2 Pin 12 (LEDO5) Segment 5 State LED (yellow) (Anode)
JP2 Pin 14 (LEDOG) Segment 6 State LED (yellow) (Anode)
JP2 Pin 16 (LEDQ7) Segment 7 State LED (yellow) (Anode)

It should be noted that for JP2, the Cathode of the LEDs returns to the Odd pin numbers (which is
ground). The user has some flexibility with JP2. It ispossible to useit to generate a gate signal for each state.
This can be done by replacing R24, R28, R33, R36, R38, R40, R42, and R44 with a short. Y ou would then wire
up to each pin of JP2 as shown below.

EVEN NUMBERED JP2 PINS

—]

PHONEJACK

R1 R2
270 470

D1
LED

'S

ODD NUMBERED JP2 PINS

Gate Output Circuit

While thiswill involve making some labor intensive point to point wiring on your front panel (the parts
can be mounted more or less on the Jack), this should provide a good solution if you want this functionality.
II. General Operational Considerations.

Thisis how the Envelope Generator works under normal conditions.

When the GATE signal goes TRUE, the STATE of the envelope generator goesto the ATTACK
STATE (STATEL, STATEO isthe RELEASE STATE). The envelope generator will remain inthe ATTACK
STATE until one of two things happens:

1. The GATE signal goes FAL SE, then Goto RELEASE STATE
2. The output voltage equalsthe ATTACK LEVEL voltage, then Goto STATE2

How long it takes for number 2 to happen depends on the ATTACK RATE control. If the time constant of the
envelope generator is set to along period, it will take longer than if the ATTACK RATE control is set to a short
time constant. It should be noted that making the ATTACK RATE more positive will decrease (make faster)
time constant.

The above process is repeated for each state, although an additional check is made to seeif we are at the
SUSTAIN SEGMENT. When the envelope generator reaches the SUSTAIN SEGMENT (which is set by the
sustain bits on JP7), it will hold that state as long as the GATE signal is TRUE. When the GATE signal goes
FALSE, it will then proceed until it reaches the end segment, which is set by the Length bits on JP7.

Until you get used to how this envelope generator actually works, you may have to remember to take a
deep breath now and then before you get ready to through it out the window...speaking as the designer, | came
close several timeto doing the same thing. | am alwaystrying to improve the device, and in the future, there
may be different state equations for the PLD that controls this thing to make operation even smoother. But, as
of right now, it seemsto work about as smoothly as can be. But it does have quirks. On longer sequences, you

may note that it doesn’'t go through all of the states. Make sure first that the GATE signal is actually TRUE the
entiretime. If you have a setup where the full length is executed, and you see it go through ATTACK, 2, 3, 4,
5, the RELEA SE (skipping 6 and 7), this could be due to several reasons...

1. The GATE signal went FALSE during STATE 5.

2. TheVoltage Levelsfor STATE 6 and STATE 7 were the same (or very nearly so) to STATE 5.
Under this condition, the envel ope generator considersitself to have settled and will go onto the next state.

3. The ATTACK RATE isvery fast.

It does take a bit of care to make sure you actually have the envelope generator set up to do what you
really want it to.

[11. Assembling the PC board

| admit it, there are alot of parts on thislittle board. 1f you havethe REV A board (first released in
March of 2003), it should have come with the hard to find parts. Even at the release date, the THAT140 was no
longer being produced, and only 25 of the REV A boards were made. So, hopefully, you have not lost either
the THAT140 or the 22V 10 that came pre programmed with the code for running the Envelope Generator. |If
you have lost the THAT140 for the REV A board, not all islost. You can substitute matched sets of 2n3904
and 2n3906 for the pairs of NPN and PNP transistors, respectively. But | would not do thisif you have the
THAT140.

The 22V 10 can be more easily replaced. The only thing special about it is the code programmed into it.
If you have means of programming a 22V 10, you should be able to download the code from the website and
burn anew on. The 22V 10 that came with the board is flash programmable so you can also update later if you
have the meansto program it.

The board itself is a high quality double sided plated through PC board. User your favorite solder and
soldering iron to construct the board. A temperature controlled iron will improve the way the solder flows, but
itisnot required. | would aso highly recommend the use of 63/37 Tin/Lead solder. 60/40 will do in apinch,
but you will get better solder joints with the 63/37.

Solder flux isaso abigissue. If you can, use a high quality solder with aflux core. Kester solder is
what | generally use. Read the instructions on the solder about cleaning. Most solder flux is actually cleaning
optional. Cleaning Rosin type flux can be apain asit requires chemicals that are not very pleasant. Kester 331
organic core flux can be cleaned with water, however, it should be noted that you must be very diligent with this
flux. You will note that Kester classifies this stuff asaMUST CLEAN flux, and they mean it. If you use
Kester 331, you must clean the board at the end of the work session. Leaving it until the next day will not work.
Kester 331 is very corrosive, however, used properly, you will end up with a nice clean board, something that is
difficult to do with the rosin fluxes.

I 1

REVISION HISTORY

15 10-18-2002 REPLACED OTA FILTER WITH CONFIGURATION
PROVIDED BY JURGEN HAIBLE WITH PERMISION (U31)
A[0..7]
1P1 U1A
) > A0 B[0.7] o
———9
93 4 3—2 1
+——— d: P - —
— 4 b— A3
—— 4J ; 13 b— A4 P2
Al TLO72
— 4 b— A5 5
1 1 12 A MO0 LEDO d
—q13 up———— /1500 2 1 P—
15 P LoGIC1 —TE00 34 3 p—1¢
UX l/_LEDO 8 5P |
LEVAEADER BX2 NGATE _ ReLEASE [—] DUALMUX S /(DO 9s [a—
S Q10 9p—¢
NSETTLED UX -15 u1B /—LEDO Q12 11 Pp—¢
UX: |/ CEDOS 3 ,
s 5 j§5 % LED1 s /" EDO 3 fs’ 1&33 33 |
— 4 b— B0 /] [MUXs 4
1 41 2 b B1 Sus[o.2] UX6 LEDI[0..7] LEDOI0..7] N
——4: th— B Xz HEADER 8X2
B3 LENJO. | TLO72
t—97 sp——si——
—9Q9 10 D—/
B5
+———dn np———58 LED
¢ d13 P Logic
— 4 b BT
15 16 LEDO[0.7]
HEADER
RATE VOLTAGE
N VAN®MTION~DO
~fal || ms-{
. 2T
— 2 LN
3 4
g3 4 LEN2
—q7 8 p— RO
8 R e i
ey SUSL I¢
—— dt 16 SUS2 AN
HEADER 8X2) 047uF
) R2 THAT140 THAT140 +15
vce & 4 10
s U31A U318
—q1 2 p——CATE 10K usic U31D ol UsA ;*0102
vcc o—q3 4 p— 1 1 14 2
vcc 0——(5 6 p— R7 R1). 4 ~1 4
o—q |
vee 7 8 OUT INV.
vce 9 10 RO
Y D P——ouonr = THAT140 | THATL40 o
L 4 ¥
13 14 P—0-10R oy 1K +Jg 10K ~
——J15 16 R4
HEADER 8X2 o
< " 100K UsA R15 -15
RS 10K 33K
. c2
AAA I¢
¥ AS
R6 TLO72
10K < 18pF
UsB R8 R57
o
-15 6|
vee
. 10K 10K
UsB
+15 TLO72
D1 6|
1N914
AAA I 2 NGATE 150K u4B THATL40 TLO72
U31E
A \]\ R13 D2
1K 74HC14 R14
R58 D3 5
100K
N914 TLO72 10K 1N914
100K
vee
R16
ok 8
D4
AUX R18 o usA 1N914
5 R19 D5
s NSEJTLED _ 0=SETTLED
1=NOT SETTLED
100K
TLO72 10K 1N914 R17
R20 < 100K
10k D6
Y 1N914
15 frite
Multi Segment Envelope Generator
MISC ize Document Number ev
100-1008 Ne
bate: aurday. March 15. 2003

[

Eweet 1 of
1

B0.71 >
JT | D ——
u us
DG201 DG201
A D1 s1 — ————21p; s1
2 10 b2 S2 ?1 Sg 10 b2 S2 T'l
A4 15 | D3 S3 My B4 15 | D3 S
D4 S4 D4 sS40y
+15 0—L3- vy (5) NC = 15 0L vys) NG
15 0—4 . GND W 15 0—4 v GND —"?
o 8 o % o 8 o s
22 ¢2 ¢z 2222
Mux(o..7] >
1 J o 9 B S
N Muxs
MUX2 _
N__Muxs
MUX4
U1
DG201 DG201
2 D1 s1 B8 21p s1
AL 6 \ L 8
A0_1q | D2 S2 M T S2 M
AT 15 |D3 T B7 15708 S
+15 0—L3- vy (5) NC +15 00— vys) N <
15 O—4v. GND w 15 O—4v- GND —"?7
o «© g g 3
2 2z g z

MUX1

)
£
3 T g
B
MUX0

DUAL 8 TO 1 MUX

[ritle:
Document Number

F 100-1008

bae ;Imlrd;: June 012002 Bheet
1

LEDI[0..7]
LEDI[0..7] S 20

;

R22
LEDIO Q3
2N3906
20K R24
vce
270
R27
LEDI1 Q6
2N3906
20K R28
vce
270
R31
LEDI2 Q8
2N3906
20K R33
vce
270
R35
LEDI3 Q10
2N3906
20K R36
vce
270
R37
LEDI4 Q11
2N3906
20K R38

270

Q12
2N3906
R40

270

Q13
2N3906
R42

vce
270
R43
LEDI7 Q14
2N3906
20K R44

270

LEDO[0..7]

< JLEDO[0..7]
[ritle:
LED DRIVERS
ize Document Number ev
F 100-1008 FNC
Date: 3 of 5

Thlur day, May 30, 2002

Bheet
1

NGATE. 1

GATE

NGATE >

74HC14

NSETTLED 11 10

SETTLED

NSETTLED >

74HC14

U30

U186

11/CLK o1 pE— s0 .
12 02 P22 21 Ha Yo RELEASE
03 Poo S5 B Y1 A0
LEN[0..2] LENO gg 19 ¢ §§ 2%
'[al o6 PE— Y4 A3
o7 pH— vec 0—5+ 61 Y5 na
o8 PLi— —29c2a Y6 A5
09 p— +——>59azs v7 A6
o010 7aHC138
SUSI0..2] >
R45
05D
74HC14
vee vee
NPOWER ON RESET
R46
b7 10K
1N914
uUsB usC
5
] 74HC14 74HC14
ca
1uF
[Title.
Logic
ize Document Number ev
100-1008 Ne
Date: ;I.mma June 01. 2002 Bheet of 5
1

R47
10K
¥
u28B
R67 & +\|\ R48
100K Q15
6 /‘/ 2N3904
TLO72 1K Q16
o uzz7 2N3404
aS
R50
10
LM4041CZ-ADJ
R51
R68
5ok O+10R
R52 30K
10K L+ ca7
p ~T~ 10uF
_l+ cas
~T~ 10uF
R53
O-10R
100K R54
B
U28A 2N390
RS55 |
5 R56

2N3906

24.9K
TLO72 1K

+
5o

c17
1uF

c7 cs c9 C10 C11 C12 C13 C14 C15 C16
1uF 1uF 1uF 1uF 1uF 1uF 1uF 1uF 1uF
1i 1i li li i i i 1i 1i
Cc19 Cc20 c21 c23 Cc24 Cc25 C26 ca7 c28
1uF 1uF 1uF 1uF 1uF 1uF 1uF 1uF 1uF
V]C

V]C V]C
C30 C31 C32 C35 C36 C39 C40
1uF 1uF 1uF 1uF 1uF 1uF 1uF

+15 O

10uF

U7 E—
N out P —Ovce
o
2 78L05 + cas
O
cs o
JuF

[ritle:

AUX CIRCUITS

er

Document Number

100-1008

ev
NC

Date:

of

[
o

Frlwda Qctober 25, 200:

Bheet
1

100-1008-6 REU A FAB DRAWING
100-1008-5 REU A COMPONENT LEGNED
100-1008 REV A = SUSTAIN
8 LENTH
‘ HEADER 8X2 5 HEADER 8X2 o-(-e.luf Q
LM4041Cz-prD] 90000000 2 P/ 00000000 7805
@ JFi 0000000 glOOKI l........ I JP2
= mHeoeoeoo00000 o
22000 c® 858 33 nﬂ2=;;’QH:: -
TOOK H% ﬂxgg o ® 900000000000 ¢ 5 o, 2
LOK 2 =] BIL LS %"7< F 22010 c e{zzuleeel T
oo o Heececeeeeee o O Z0leee o
@ 5. o AL EEE 220 ;e 0@
T c C .1UF, o~~~ 303 2201000
o o e0cccoe o2° . 00000000 9. o70]e0e
o ‘ 66# 74HCI4 é§§ F >4HC138 =
@ .00 Hoeecoe 0770 Hoeooeoe o () 00000
—- 2N3906 2N33906 2&59@@ m TLO72 c
10uF € 2N3906 _ 2N3906 2N3906 3906 _ o =2
(059042/959)(059042)9, 9[99, e Heoo o _

¥0BENZ

£

%N

e | (€
OO
~

A0Z

N
(]

N
zZ
w
w
o
N

[I
c [N
oo
Q
[]

AuFa1uF

A0¢

N
o
VaN

ufF .
0000000000

N
(=]
~

[Y0Z]

J1.

?290¢°

=
Oll|
(=] |[=,
AA

—

2001
A0T

—@{¥ 16N
@7 16N

= —|—
Ollol|lo (81 | [em]
S| 7| FaY Ollo

'YX X

—[—]— —
ARRIE
AN M
.
[

0 0000000000000 O0CFO0 000000 ~ 00000 O
TIFTLO?Z DG201 DG201 c H(HT072
TL072 U5 gazuF
® HOOOOONO000000000N000000000N0000 (o ogONOOGO
2N3S06 | 1UF Sl
L-E 0000000

ol = THAT140
= DG201 DG201 TLO72

e

000, 2T000000000H000000000N00000 moOO0OOO

= - 1uF

—_
[

&=

5

—_ =

000000 ONS 5 MULTISEGMENT

hd c
=1 =)= T
R JP3 JP1 ENVELOPE ol |o9llo)lo
= 00000O0CO0CO 00000O0GCSO GENERATOR S [R/IRIS
5 HEADER 8X2 HEADER 8X2 T
ANAL OGIINPUTS
A .
< 4500mil >

4000m11

CeNoTRONE

C. \ proj ect s\ Synt hivbd\ 100- 1008\ 1001008. bom

Mul ti Segment Envel ope Generator Revised: Saturday, March 15, 2003

100- 1008 Revi si on: NC

Ji m Pat chel
pat chel | @il com com

Bill O Materials March 15, 2003 16: 16: 12 Pagel
ltem Quantity Ref erence Par t Part Number

1 1 Cl1 .047uF 23PS310

2 1 C2 18pF

3 1 C3 .0luF 271-PF2A103J

4 29 4,C5,C7,C8, 09, C10,C11, .1uF 80- C410C104MpU

Cl2, C13, C14, C15, C16, C17,
C19, C20, C21, C23, C24, C25,
C26, C27, C28, C30, C31, C32,
C35, C36, C39, 40

5 3 C45, C47, C48 10uF 140- XRL35V10

6 7 D1, D2, D3, D4, D5, D6, D7 1N914

7 5 JP1, JP2, JP3, JP4, JP7 HEADER 8X2

8 1 P1 POWNER

9 10 @8, 6, 8, Q10, Q11, Q12, QL3, 2N3906 512- 2N3906
Ql4, QL7, Q18

10 2 Q15, Q16 2N3904 512-2N3904

11 1 RN1 100K

12 14 R1,R2,R5,R6,R8,R9, R13, 10K 271-10K

R16, R19, R45, R46, R47, R52,
R57

13 5 R3, R7, R11, R48, R56 1K 271-1K

14 8 R4, R14, R17, R18, R53, R58, 100K 271- 100K
R67, R68

15 2 R20, R10 150K 271- 150K

16 1 R12 200 271-200

17 1 R15 3. 3K 271-3. 3K

18 8 R22, R27, R31, R35, R37, R39, 20K 271- 20K
R41, R43

19 8 R24, R28, R33, R36, R38, R40, 270 271-270
R42, R44

20 2 R50, R54 10 271-10

21 1 R51 30K 271- 30K

22 1 R55 24. 9K 271-24.9K

23 4 U1, U3, W4, U28 TLO72 511- TLO72CP

24 1 Us 74HC14 511- M74HCl4

25 1 U6 TLO72

26 4 Uz, U8, U9, U10 D&201 D&01AC]

27 1 Ul6 74HC138 511- M74HC138

28 1 U27 LMA041CZ- ADJ

29 1 U29 78L05

30 1 u3o 22v10

31 1 U3l THAT140

5 [4 [3 [2
OTE: THIS DIAGRAM IS SET UP FOR 8 SEGMENTS
OTE:S1 USES ON THE FIRST 7 POSITIONS S2A S28 s2¢
O BC 1 BO ;CFH l"o ;Cl"1
oAz oB2 ¢ otz 4
oA ¢ o83 ot 4
ohd__ oB4 oc4a 4
oAs ¢ oB5 ¢ ocs
o oB6 ¢ oc6— ,
o f o o R1 R2
an R o8 100K 100K
SWITCH ROTARY 8T3P L/\,
R3 R4
100K 100K
s1A s18 sic 121
— g, 2 pb——
B1 C C1 q 3 4 o} 1P
—0s 6 p— —q1 2 p———
[oB2— of2— 4 —q7 gp——— RS —q3 2 p——
—9o 10 P—— 100K —9s 6 p— 100K
oA — o3 — oLi——— —11 12— —aq7 8
—J13 14 p— —o 10 p———
oAd—4 oB4— otd— —Q 15 16 P— —Q 11 2P
t —9q13 14
OAS oBS ¢ oC5— HEADER 8X2 —4 b—
LEVEL 5 16
foy.-M— oB6 oC6— R7 HEADER 8X2 R
poTs 100K RATE 100K
oAz oBZ otz POTS \i/\
SWITCH ROTARY 8T3P
R9 R10
SUSTAI N SEGVENT 100K 100K
1p
o P | - S— —«JM— L/\
S 7 p— ,
—q H 6 o——
7 8
RIL R12
—9 ?1 }g P— suso 100K 100K
— 4 b—SUSQ |
—q13 14 332; 10
—d15 16
HEADER 8X2
R13 R14
P8 100K 100K
2 1 p——
JR 3 b—
—ds s b—
—ds S b—
+10 10 IR R15 R16
10 Q2 1P 100K 100K
r—9q14 13p—
16 15 P——
HEADER 8X2
a1
|_| E GATE
PHONEJACK
D3
AN SEG4
32 LED
v fg: D4
|_| ’l)‘)‘ SEG:
PHONEJACK LED
D5
A seG
33 LED
out
v fg_ D6
|_| ’l)‘)‘ SEG1
PHONEJACK LED
D7
el TTACK
LED fitle
08 MULTISEGMENT EG FRONT PANEL
Vel RELEASE ize Document Number
<Doc>
LED
Date: Tuesda 12.2002 Bheet 1 of 1
5 [4 [3 [2 [1

multisegtop.vhd

library ieee;
use leee.std _logic_1164._all;

library cypress;
use cypress.std_arith.all;

use work.compare_pkg.all;

use work.statemachine_pkg.all;
use work.counter_pkg.all;

use work.StateType_pkg.all;

entity multisegtop is
port (
CLOCK:in std_logic;
RESET: in std_logic;
COUNT: inout std_logic_vector(2 downto 0);
GATE:in std_logic;
SETTLED:in std_logic;
MAX:in std_logic_vector(2 downto 0);
HOLD:in std_logic_vector(2 downto 0);
- MAXI:in std_logic;
- HOLDI:in std_logic;
MAXO:buffer std_logic;
HOLDO:buffer std_logic;
STATE:buffer std_logic_vector(l downto 0)

E
attribute pin_numbers of multisegtop:entity is

"CLOCK:1 "'&
"RESET:2 "'&
"GATE:3 "'&
"“SETTLED:4 "'&
"MAX(0):5 &
"MAX(1):6 &
"MAX(2):7 &
"HOLD(0):8 "'&
"HOLD(1):9 ""&
"HOLD(2):10 ""&

- "MAXI:11 &

- "HOLDI:13 "'&
"COUNT(0):22 "&
"COUNT(1):21 "&
"COUNT(2):20 "&
"STATE(0):15 "&
"STATE(1):16 "&
"MAXO0:14 “'&
""HOLDO:23 "';

end multisegtop;

architecture archmultisegtop of multisegtop is
signal zerocount:std_logic;
signal enablecount:std_logic;
signal states:StateType;
begin
ul:compare port map(a=>HOLD,b=>COUNT,c=>HOLDO) ;
u2:compare port map(a=>MAX,b=>COUNT,c=>MAXO) ;
u3:counter port
map (clk=>CLOCK, reset=>RESET,dout=>COUNT,enable=>enablecount,clr=>zerocount);

Page 1

multisegtop.vhd
u4:statemachine port
map(clk=>CLOCK, reset=>RESET,gate=>GATE,settled=>SETTLED, envend=>MAXO, hold=>HOLDO, inc
=>enablecount,clear=>zerocount,state=>states);
STATE <= "00" when (states = idle) else
01" when (states = attack) else
"10" when (states = sustain) else
11"

end archmultisegtop;

Page 2

MULTISEG.VHD
--multi segment controller ic

library ieee;
use leee.std _logic_1164._all;

package counter_pkg is
component counter
port (
clk:in std_logic;
reset: in std_logic;
dout: inout std_logic_vector(2 downto 0);
enable:in std_logic;
clr:in std_logic
end component;
end counter_pkg;

library ieee;
use leee.std _logic_1164._all;

library cypress;
use cypress.std_arith._all;
use cypress.lIpmpkg.all;

entity counter is
port (
clk:in std_logic;
reset: in std_logic;
dout: inout std_logic_vector(2 downto 0);
enable:in std_logic;
clr:in std_logic
):

end;

architecture counter_arch of counter is
begin
sr:process(reset,clk)
begin
if(reset = "0") then
dout <= "000"; --reset the counter
elsif (clk®"event and clk = "1%) then
if(clr = "1") then

dout <= "000"; -- clear counter
elsif(enable = "1") then

dout <= dout +1; -—-increment counter
else

dout <= dout; --hold
end if;

end if;
end process;
end counter_arch;

Page 1

STATESEQ.VHD

library ieee;
use leee.std _logic_1164._all;

package StateType pkg is
type StateType is (idle,attack,sustain,release);
end StateType_ pkg;

library ieee;
use leee.std _logic_1164._all;
use work.StateType_pkg-.all;

package statemachine_pkg is
component statemachine
port (
clk:in std_logic;
reset: in std_logic;
gate:in std_logic;
settled:in std_logic;
envend:in std_logic;
hold:in std_logic;
inc:out std_logic;
clear:out std_logic;
state:buffer StateType
)
end component;
end statemachine_ pkg;

library ieee;
use leee.std _logic_1164._all;

library cypress;

use cypress.std_arith._all;

use cypress.Ipmpkg.all;

use work.statemachine_pkg.all;
use work.StateType_pkg-.all;

entity statemachine is
port (

clk:in std_logic;
reset: in std_logic;
gate:in std_logic;
settled:in std_logic;
envend:in std_logic;
hold:in std_logic;
inc:out std_logic;
clear:out std_logic;
state:buffer StateType
):

end;

architecture statemachine_arch of statemachine is
signal current_state,next_state: StateType;
begin
state_clock:process(reset,clk)
begin
if(reset = "0") then
current_state <= idle;

Page 1

STATESEQ.VHD
elsif (clk®"event and clk = "1%) then
current_state <= next_state;

end if;

end process state_clock;

state_comb:process(current_state,gate,settled,envend,hold)
begin

"0") then

"0") then

case current_state is
when idle =>

if(gate

else

end if;

when attack =>

if(gate

elsif (gate = "1%) and (settled

elsif (gate = "1%) and (settled

= "1") then
next_state <=
inc <= "1";
clear <= "0";

attack;

next_state <= idle;
inc <= "0";
clear <= "07;

= "0") then
next_state <=
inc <= "0";
clear <= "1";

idle;

next _state <= attack;
inc <= "0%;
clear <= "0";

next_state <= attack;
inc <= "1°%;
clear <= "0";

"0") and (hold

"1") and (hold

elsif (gate = "1*) and (hold = "1") then

else

end if;
when sustain =>
if(gate

next _state <= sustain;
inc <= "0";
clear <= "0";
next_state <= attack;
inc <= "0";

clear <= "0";

= "1") then
next_state <=
inc <= "0";
clear <= "0";

sustain;

elsif (gate = "0") and (envend

next_state <= idle;
inc <= "0";
clear <= "1°7;

elsif (gate = "0") and (envend

else

end if;
when release =>

next_state <= release;
inc <= "1";

clear <= "0";

next _state <= sustain;
inc <= "0";

clear <= "0";

if(settled = "0") then

next _state <= release;
inc <= "07;

Page 2

"1") then

"0") then

STATESEQ.VHD
clear <= "0";

elsif(settled = "1") and (envend = "0") then
next_state <= release;
inc <= "1";
clear <= "0";

elsif(settled = "1") and (envend = "1%) then

next_state <= idle;
inc <= "0";
clear <= "1°7;

else
next_state <= idle;
inc <= "0";
clear <= "0";
end if;
end case;

end process state_comb;
state <= current_state;
end statemachine_arch;

Page 3

compare3bit.vhd

library ieee;
use leee.std _logic_1164._all;

package compare_pkg is
component compare
port (
azin std_logic_vector(2 downto 0);
b:in std_logic_vector(2 downto 0);
c:buffer std_logic
end component;
end compare_pkg;

library ieee;
use leee.std _logic_1164._all;

library cypress;
use cypress.std_arith._all;
use cypress.lIpmpkg.all;

entity compare is
port (
azin std_logic_vector(2 downto 0);
b:in std_logic_vector(2 downto 0);
c:buffer std_logic
):

end;

architecture compare_arch of compare is
begin

c <= "1" when (a = b) else "0";
end compare_arch;

Page 1

	Before you build…
	Construction Options
	Front panel wiring.
	Gate Output Circuit
	Assembling the PC board
	Board Schematic
	Mux
	Led Driver
	Control Logic
	Aux Circuits

	Assembly Drawing
	Bill Of Materials
	Front Panel Schematic
	VHDL Code
	Counter
	State Machine
	Comparator

