
Using the 100-1008 Multisegment Envelope Generator

 0. Before you build…

The following changes should be made. Many of the part values for the components are printed on the legend
for the component side, which sure makes building the board easier, but some of them may have been changed.
Please make the following changes.

 Rev A Board

Reference Designator Legend Says Should Be
R4 499K 100K

 1. Construction Options

There are several ways you can build your 100-1008 envelope generator. This is unfortunate in a way, because
now you will have to make a decision. On the other hand, I like things to have a lot of flexibility, so you will be
able to both suffer and enjoy this board.

 a. Sequence Length

The length of the sequence is controlled by pins 2, 4 and 6 on connector JP7. Use
 the following table to configure the sequence length.

 b. Sustain Segment

The sustain segment is the state that the envelope generator will hold at when the gate signal is true (gate >
1.4votls). This function is selected by using pins 12, 14 and 16 on connector JP7. Use the following table
below to configure the sustain segment.

Pin 11 and 12 Pin 13 and 14 Pin 15 and 16 Sustain Segment
Open Short Short 1 (Attack)
Short Open Short 2

Pin 1 and 2 Pin 3 and 4 Pin 5 and 6 Length
Open Short Short 2
Short Open Short 3
Open Open Short 4
Short Short Open 5
Open Short Open 6
Short Open Open 7
Open Open Open 8

Open Open Short 3
Short Short Open 4
Open Short Open 5
Short Open Open 6
Open Open Open 7

One thing you must be careful about is that if you have a 4 segment length, you do not want the sustain to occur
at segment 5, although, this will cause no harm, I am not sure how it will affect the operation…although, feel
free to try. Who knows, something interesting may happen. I suspect that it will just go through all the
segments without stopping until it gets to the release segment. However, if the gate is still true, it may just start
all over again until the gate is released.

 2. Front panel wiring.

 The wiring for the front panel is not at all critical. If you look at the front panel wiring diagram
supplied, this is just one option. In fact, I guess you could say that this is the full blown option. Well, maybe
not quite full blown. If you note, on JP7 I have shown a three deck rotary switch to select the sustain level
segment. The length inputs are left floating so the length is fixed at 8. However, you could also add a rotary
switch to the length inputs as well and get a lot of flexibility in how the module will work.

 You could also hard wire the length to say just four segments. In this case, you could eliminate half of
the rate pots and half of the level pots. You could also make the sustain segment fixed as well. If you set it to
say four segments in length, you could have the sustain segment be on segment 3. This would make the module
sort of like a real fancy ADSR, or, more like an ADDSR.

 Also, if you have fewer than 8 segments, you can wire up fewer LEDs, if you choose to have LEDs that
is. One thing to note, LED0 (pin 2 of JP2) is always the LED that indicates the Release State. And Led1 (pin 4
of JP2) always indicates the Attack State.

JP1 Pin Definitions. These inputs control the voltage level each segment decays to.

JP1 Pin 2 (A0) Release Voltage Level
JP1 Pin 4 (A1) Attack Voltage Level
JP1 Pin 6 (A2) Segment 2 Voltage Level
JP1 Pin 8 (A3) Segment 3 Voltage Level
JP1 Pin 10 (A4) Segment 4 Voltage Level
JP1 Pin 12 (A5) Segment 5 Voltage Level
JP1 Pin 14 (A6) Segment 6 Voltage Level
JP1 Pin 16 (A7) Segment 7 Voltage Level

JP3 Pin Definitions. These inputs control the rate each segment decays at.

JP3 Pin 2 (B0) Release Rate Voltage
JP3 Pin 4 (B1) Attack Rate Voltage
JP3 Pin 6 (B2) Segment 2 Rate Voltage

JP3 Pin 8 (B3) Segment 3 Rate Voltage
JP3 Pin 10 (B4) Segment 4 Rate Voltage
JP3 Pin 12 (B5) Segment 5 Rate Voltage
JP3 Pin 14 (B6) Segment 6 Rate Voltage
JP3 Pin 16 (B7) Segment 7 Rate Voltage

JP4 Pin Definitions.

JP4 Pin 2 (GATE) Gate input to Trigger Envelope Sequence
JP4 Pin 10 (OUT_INV) Inverted Envelope Output
JP4 Pin 12 (+10R) +10 volts for Pots
JP4 Pin 14 (-10R) -10 volts for Pots
JP4 Pin 16 (OUT) Envelope Output

JP7 Pin Definitions. These inputs control the Length and Sustain segment.

JP7 Pin 2 (LEN0) Bit 0 for Length
JP7 Pin 4 (LEN1) Bit 1 for Length
JP7 Pin 6 (LEN2) Bit 2 for Length
JP7 Pin 12 (SUS0) Bit 0 for Sustain
JP7 Pin 14 (SUS1) Bit 1 for Sustain
JP7 Pin 16 (SUS2) Bit 2 for Sustain

JP2 Pin Definitions. These outputs are intended to light an LED indicating the current state.

JP2 Pin 2 (LEDO0) Release State LED (red) (Anode)
JP2 Pin 4 (LEDO1) Attack State LED (green) (Anode)
JP2 Pin 6 (LEDO2) Segment 2 State LED (yellow) (Anode)
JP2 Pin 8 (LEDO3) Segment 3 State LED (yellow) (Anode)
JP2 Pin 10 (LEDO4) Segment 4 State LED (yellow) (Anode)
JP2 Pin 12 (LEDO5) Segment 5 State LED (yellow) (Anode)
JP2 Pin 14 (LEDO6) Segment 6 State LED (yellow) (Anode)
JP2 Pin 16 (LEDO7) Segment 7 State LED (yellow) (Anode)

 It should be noted that for JP2, the Cathode of the LEDs returns to the Odd pin numbers (which is
ground). The user has some flexibility with JP2. It is possible to use it to generate a gate signal for each state.
This can be done by replacing R24, R28, R33, R36, R38, R40, R42, and R44 with a short. You would then wire
up to each pin of JP2 as shown below.

R1

270

J1

PHONEJACK

D1

LED

EVEN NUMBERED JP2 PINS

ODD NUMBERED JP2 PINS

R2

470

 Gate Output Circuit

 While this will involve making some labor intensive point to point wiring on your front panel (the parts
can be mounted more or less on the Jack), this should provide a good solution if you want this functionality.
 II. General Operational Considerations.

 This is how the Envelope Generator works under normal conditions.

 When the GATE signal goes TRUE, the STATE of the envelope generator goes to the ATTACK
STATE (STATE1, STATE0 is the RELEASE STATE). The envelope generator will remain in the ATTACK
STATE until one of two things happens:

 1. The GATE signal goes FALSE, then Goto RELEASE STATE
 2. The output voltage equals the ATTACK LEVEL voltage, then Goto STATE2

How long it takes for number 2 to happen depends on the ATTACK RATE control. If the time constant of the
envelope generator is set to a long period, it will take longer than if the ATTACK RATE control is set to a short
time constant. It should be noted that making the ATTACK RATE more positive will decrease (make faster)
time constant.

 The above process is repeated for each state, although an additional check is made to see if we are at the
SUSTAIN SEGMENT. When the envelope generator reaches the SUSTAIN SEGMENT (which is set by the
sustain bits on JP7), it will hold that state as long as the GATE signal is TRUE. When the GATE signal goes
FALSE, it will then proceed until it reaches the end segment, which is set by the Length bits on JP7.

 Until you get used to how this envelope generator actually works, you may have to remember to take a
deep breath now and then before you get ready to through it out the window…speaking as the designer, I came
close several time to doing the same thing. I am always trying to improve the device, and in the future, there
may be different state equations for the PLD that controls this thing to make operation even smoother. But, as
of right now, it seems to work about as smoothly as can be. But it does have quirks. On longer sequences, you

may note that it doesn’t go through all of the states. Make sure first that the GATE signal is actually TRUE the
entire time. If you have a setup where the full length is executed, and you see it go through ATTACK, 2, 3, 4,
5, the RELEASE (skipping 6 and 7), this could be due to several reasons…

 1. The GATE signal went FALSE during STATE 5.

 2. The Voltage Levels for STATE 6 and STATE 7 were the same (or very nearly so) to STATE 5.
Under this condition, the envelope generator considers itself to have settled and will go onto the next state.

 3. The ATTACK RATE is very fast.

 It does take a bit of care to make sure you actually have the envelope generator set up to do what you
really want it to.

III. Assembling the PC board

 I admit it, there are a lot of parts on this little board. If you have the REV A board (first released in
March of 2003), it should have come with the hard to find parts. Even at the release date, the THAT140 was no
longer being produced, and only 25 of the REV A boards were made. So, hopefully, you have not lost either
the THAT140 or the 22V10 that came pre programmed with the code for running the Envelope Generator. If
you have lost the THAT140 for the REV A board, not all is lost. You can substitute matched sets of 2n3904
and 2n3906 for the pairs of NPN and PNP transistors, respectively. But I would not do this if you have the
THAT140.

 The 22V10 can be more easily replaced. The only thing special about it is the code programmed into it.
If you have means of programming a 22V10, you should be able to download the code from the website and
burn a new on. The 22V10 that came with the board is flash programmable so you can also update later if you
have the means to program it.

 The board itself is a high quality double sided plated through PC board. User your favorite solder and
soldering iron to construct the board. A temperature controlled iron will improve the way the solder flows, but
it is not required. I would also highly recommend the use of 63/37 Tin/Lead solder. 60/40 will do in a pinch,
but you will get better solder joints with the 63/37.

 Solder flux is also a big issue. If you can, use a high quality solder with a flux core. Kester solder is
what I generally use. Read the instructions on the solder about cleaning. Most solder flux is actually cleaning
optional. Cleaning Rosin type flux can be a pain as it requires chemicals that are not very pleasant. Kester 331
organic core flux can be cleaned with water, however, it should be noted that you must be very diligent with this
flux. You will note that Kester classifies this stuff as a MUST CLEAN flux, and they mean it. If you use
Kester 331, you must clean the board at the end of the work session. Leaving it until the next day will not work.
Kester 331 is very corrosive, however, used properly, you will end up with a nice clean board, something that is
difficult to do with the rosin fluxes.

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

LEVEL VOLTAGE

RATE VOLTAGE

0=SETTLED
1=NOT SETTLED

REVISION HISTORY
10-18-2002 REPLACED OTA FILTER WITH CONFIGURATION
PROVIDED BY JURGEN HAIBLE WITH PERMISION (U31)

100-1008 NC

Multi Segment Envelope Generator

1 5Saturday, March 15, 2003

Title

Size Document Number Rev

Date: Sheet of

LOGIC1

Logic

RELEASE
A0
A1
A2
A3
A4
A5
A6

NGATE
NSETTLED

SUS[0..2]

LEN[0..2]

MUX1

DUALMUX

A[0..7]
B[0..7]
MUX[0..7]

A
B

LED1

LED

LEDI[0..7] LEDO[0..7]

AUX

MISC

MUX0
MUX1
MUX2
MUX3
MUX4
MUX5
MUX6
MUX7

MUX[0..7]

A0
A1
A2
A3
A4
A5
A6
A7

B3

B6

B4

B2

B5

B0

B7

B1

A[0..7]

B[0..7]

NSETTLED

GATE

OUT

LEDO0
LEDO1
LEDO2
LEDO3
LEDO4
LEDO5
LEDO6
LEDO7

LEDO[0..7]

LEN1

SUS2

LEN[0..2]

SUS[0..2]

LEN0

LEN2

SUS0
SUS1

NGATE

OUT_INV

VCC

VCC

+10R
-10R

+15

+15

+15

+15

+15

-15

-15

-15

-15

-15

VCC

VCC
VCC
VCC
VCC

R2

10K U31C

THAT140

2

31

+

-

U6A

TL072

2

3
4

1
8

R1

10K

R58
100K

R3

1K

JP1

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

JP3

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

+

-

U6B

TL072

6

5
7

R57

10K

U31E
THAT140

7Substrate

U31B

THAT140

9

10 8

JP7

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

+

-

U4B

TL072

6

5
7

+

-

U4A

TL072

2

3

4

1

8

R5 10K

+

-

U3A

TL072

2

3

4

1

8

+

-

U3B

TL072

6

5
7

R6
10K

R7

1K
R4

100K

U5A

74HC14

1 2

+

-

U1A

TL072

2

3

4

1

8

+

-

U1B

TL072

6

5
7

U31D

THAT140

13

12 14

D2

1N914

D5

1N914

D4

1N914

R8

10K

D6

1N914

R15
3.3K

R13

10K

R12
200

R19

10K R17
100K

JP2

HEADER 8X2

12
34
56
78
910

1112
1314
1516

JP4

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

R9
10K

C2

18pF

C1

.047uF

U31A

THAT140

5

46

R14

100K

R18

100K

RN1

100K

1 2 3 4 5 6 7 8 9 10

C 1 2 3 4 5 6 7 8 9

R20

150K

R16

10K

R11

1K

R10

150K

D1

1N914

D3

1N914

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

100-1008 NC

DUAL 8 TO 1 MUX

2 5Saturday, June 01, 2002

Title

Size Document Number Rev

Date: Sheet of

MUX5
MUX2
MUX3
MUX4

MUX0
MUX1

MUX7

MUX6

A6
A1
A0
A7

A2
A3

A5

A4

B0

B2

B1

B7

B4

B6

B5

B3

+15

+15 +15

+15
-15-15

-15 -15

U9
DG201

2
7

10
15

3
6
11
14

1 8 9 16

12
5

13
4

D1
D2
D3
D4

S1
S2
S3
S4

IN
1

IN
2

IN
3

IN
4

NC
GND

V+(S)
V-

U7
DG201

2
7

10
15

3
6
11
14

1 8 9 16

12
5

13
4

D1
D2
D3
D4

S1
S2
S3
S4

IN
1

IN
2

IN
3

IN
4

NC
GND

V+(S)
V-

U8
DG201

2
7

10
15

3
6
11
14

1 8 9 16

12
5

13
4

D1
D2
D3
D4

S1
S2
S3
S4

IN
1

IN
2

IN
3

IN
4

NC
GND

V+(S)
V-

U10
DG201

2
7

10
15

3
6
11
14

1 8 9 16

12
5

13
4

D1
D2
D3
D4

S1
S2
S3
S4

IN
1

IN
2

IN
3

IN
4

NC
GND

V+(S)
V-

A[0..7]

B[0..7]

MUX[0..7]

A

B

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

100-1008 NC

LED DRIVERS

3 5Thursday, May 30, 2002

Title

Size Document Number Rev

Date: Sheet of

LEDI0

LEDI1

LEDI2

LEDI3

LEDI4

LEDI7

LEDI6

LEDI5

LEDI[0..7]

LEDO0

LEDO1

LEDO2

LEDO3

LEDO4

LEDO5

LEDO6

LEDO7

LEDO[0..7]

VCC

VCC

VCC

VCC

VCC

VCC

VCC

VCC

R38

270

R36

270

Q3
2N3906

R37

20K

Q11
2N3906

R22

20K

R43

20K

Q14
2N3906

Q6
2N3906

Q8
2N3906

Q10
2N3906

R24

270

R42

270

Q13
2N3906

R39

20K

R41

20K

R27

20K

R31

20K

R35

20K

Q12
2N3906

R44

270

R40

270

R28

270

R33

270

LEDI[0..7]

LEDO[0..7]

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

100-1008 NC

Logic

4 5Saturday, June 01, 2002

Title

Size Document Number Rev

Date: Sheet of

S1
S2

NPOWER_ON_RESET

NGATE GATE

SETTLEDNSETTLED

LEN0
LEN1
LEN2

SUS0
SUS1
SUS2

S0

VCC

VCCVCC

C3
.01uF

U5B

74HC14

3 4

C4

.1uF

R46
10KD7

1N914

U5F

74HC14

13 12

U5E

74HC14

11 10

U30

22V10

1
2
3
4
5
6
7
8
9

10
11
13

23
22
21
20
19
18
17
16
15
14

I1/CLK
I2
I3
I4
I5
I6
I7
I8
I9
I10
I11
I12

O1
O2
O3
O4
O5
O6
O7
O8
O9

O10

U16

74HC138

1
2
3

6
4
5

15
14
13
12
11
10
9
7

A
B
C

G1
G2A
G2B

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U5D

74HC14

9 8

U5C

74HC14

5 6

R45

10K

RELEASE
A0
A1
A2
A3
A4
A5
A6

NGATE

NSETTLED

SUS[0..2]

LEN[0..2]

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

100-1008 NC

AUX CIRCUITS

5 5Friday, October 25, 2002

Title

Size Document Number Rev

Date: Sheet of

+15

+15

+15

-15

-15

+10R

-10R

-15

+15

-15

+15

-15

+15

-15

+15 +15

-15

+15

-15

+15

-15

+15

-15

+15

-15

+15

-15

VCC VCC VCC VCC VCC VCC VCC

VCC+15

+15

D

-15

R67
100K

C16
.1uF

C5
.1uF

C26
.1uF

R50
10

C10
.1uF

R56

1K

R47
10K

C23
.1uF

C17
.1uF

R55

24.9K

C19
.1uF

R68
100K

Q17

2N3906

P1

POWER

1
2
3
4

R54
10

U29

78L05

3

2

1IN

G
N

D

OUT

C14
.1uF

+ C45
10uF

+

-

U28A

TL072

2

3

4

1

8

+ C47
10uF

R52
10K

+ C48
10uF

C36
.1uF

C32
.1uF

C11
.1uF

C20
.1uF

C27
.1uF

C24
.1uF

C7
.1uF

C30
.1uF

U27

LM4041CZ-ADJ

3
2

1

Q15
2N3904

C40
.1uF

R51

30K

C21
.1uF

C8
.1uF

C15
.1uF

C12
.1uF

C25
.1uF

Q16

2N3904

C28
.1uF

C35
.1uF

C9
.1uF

R48

1K

C31
.1uF

R53

100K

C13
.1uF

C39
.1uF

+

-

U28B

TL072

6

5
7

Q18
2N3906

C:\projects\SynthMod\100-1008\1001008.bom

1

 1: Multi Segment Envelope Generator Revised: Saturday, March 15, 2003
 2: 100-1008 Revision: NC
 3:
 4: Jim Patchell
 5: patchell@silcom.com
 6:
 7:
 8:
 9:
10: Bill Of Materials March 15,2003 16:16:12 Page1
11:
12: Item Quantity Reference Part Part Number
13: __
14:
15: 1 1 C1 .047uF 23PS310
16: 2 1 C2 18pF
17: 3 1 C3 .01uF 271-PF2A103J
18: 4 29 C4,C5,C7,C8,C9,C10,C11, .1uF 80-C410C104M5U
19: C12,C13,C14,C15,C16,C17,
20: C19,C20,C21,C23,C24,C25,
21: C26,C27,C28,C30,C31,C32,
22: C35,C36,C39,C40
23: 5 3 C45,C47,C48 10uF 140-XRL35V10
24: 6 7 D1,D2,D3,D4,D5,D6,D7 1N914
25: 7 5 JP1,JP2,JP3,JP4,JP7 HEADER 8X2
26: 8 1 P1 POWER
27: 9 10 Q3,Q6,Q8,Q10,Q11,Q12,Q13, 2N3906 512-2N3906
28: Q14,Q17,Q18
29: 10 2 Q15,Q16 2N3904 512-2N3904
30: 11 1 RN1 100K
31: 12 14 R1,R2,R5,R6,R8,R9,R13, 10K 271-10K
32: R16,R19,R45,R46,R47,R52,
33: R57
34: 13 5 R3,R7,R11,R48,R56 1K 271-1K
35: 14 8 R4,R14,R17,R18,R53,R58, 100K 271-100K
36: R67,R68
37: 15 2 R20,R10 150K 271-150K
38: 16 1 R12 200 271-200
39: 17 1 R15 3.3K 271-3.3K
40: 18 8 R22,R27,R31,R35,R37,R39, 20K 271-20K
41: R41,R43
42: 19 8 R24,R28,R33,R36,R38,R40, 270 271-270
43: R42,R44
44: 20 2 R50,R54 10 271-10
45: 21 1 R51 30K 271-30K
46: 22 1 R55 24.9K 271-24.9K
47: 23 4 U1,U3,U4,U28 TL072 511-TL072CP
48: 24 1 U5 74HC14 511-M74HC14
49: 25 1 U6 TL072
50: 26 4 U7,U8,U9,U10 DG201 DG201ACJ
51: 27 1 U16 74HC138 511-M74HC138
52: 28 1 U27 LM4041CZ-ADJ
53: 29 1 U29 78L05
54: 30 1 U30 22V10
55: 31 1 U31 THAT140
56:

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

RATE
POTS

LEVEL
POTS

RELEASE

ATTACK

SEG1

SEG2

SEG3

SEG4

SEG5

SEG6

NOTE: THIS DIAGRAM IS SET UP FOR 8 SEGMENTS
NOTE:S1 USES ON THE FIRST 7 POSITIONS

SUSTAIN SEGMENT

<Doc> NC

MULTISEGMENT EG FRONT PANEL

1 1Tuesday, November 12, 2002

Title

Size Document Number Rev

Date: Sheet of

SUS0
SUS1
SUS2

GATE

OUT-INV

OUT

+10
-10

-10

JP1

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

S1A

A A1

A2

A3

A4

A5

A6

A7

A8

S1B

B B1

B2

B3

B4

B5

B6

B7

B8

D3

LED

J1

PHONEJACK

JP2

HEADER 8X2

12
34
56
78
910

1112
1314
1516

D8

LED

R3
100K

R16
100K

R11
100K

R2
100K

D4

LED

R6
100K

J2

PHONEJACK

JP3

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

R5
100K

R13
100K

R10
100K

D5

LED

S1C

SWITCH ROTARY 8T3P

C C1

C2

C3

C4

C5

C6

C7

C8

JP8

HEADER 8X2

12
34
56
78
910

1112
1314
1516

J3

PHONEJACK

R14
100K

D1

LED

R7
100K

R15
100K

D6

LED

R4
100K

JP7

HEADER 8X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16

D2

LED

R8
100K

R1
100K

R9
100K

D7

LED

R12
100K

S2A

A A1

A2

A3

A4

A5

A6

A7

A8

S2C

SWITCH ROTARY 8T3P

C C1

C2

C3

C4

C5

C6

C7

C8

S2B

B B1

B2

B3

B4

B5

B6

B7

B8

multisegtop.vhd
--
-
-- Top level for Multisegment Envelope Generator Controller
--
-

library ieee;
use ieee.std_logic_1164.all;

library cypress;
use cypress.std_arith.all;

use work.compare_pkg.all;
use work.statemachine_pkg.all;
use work.counter_pkg.all;
use work.StateType_pkg.all;

entity multisegtop is
port (

CLOCK:in std_logic;
RESET: in std_logic;
COUNT: inout std_logic_vector(2 downto 0);
GATE:in std_logic;
SETTLED:in std_logic;
MAX:in std_logic_vector(2 downto 0);
HOLD:in std_logic_vector(2 downto 0);

-- MAXI:in std_logic;
-- HOLDI:in std_logic;

MAXO:buffer std_logic;
HOLDO:buffer std_logic;
STATE:buffer std_logic_vector(1 downto 0)
);

attribute pin_numbers of multisegtop:entity is
"CLOCK:1 "&
"RESET:2 "&
"GATE:3 "&
"SETTLED:4 "&
"MAX(0):5 "&
"MAX(1):6 "&
"MAX(2):7 "&
"HOLD(0):8 "&
"HOLD(1):9 "&
"HOLD(2):10 "&

-- "MAXI:11 "&
-- "HOLDI:13 "&

"COUNT(0):22 "&
"COUNT(1):21 "&
"COUNT(2):20 "&
"STATE(0):15 "&
"STATE(1):16 "&
"MAXO:14 "&
"HOLDO:23 ";

end multisegtop;

architecture archmultisegtop of multisegtop is
signal zerocount:std_logic;
signal enablecount:std_logic;
signal states:StateType;
begin

u1:compare port map(a=>HOLD,b=>COUNT,c=>HOLDO);
u2:compare port map(a=>MAX,b=>COUNT,c=>MAXO);
u3:counter port

map(clk=>CLOCK,reset=>RESET,dout=>COUNT,enable=>enablecount,clr=>zerocount);

Page 1

multisegtop.vhd
u4:statemachine port

map(clk=>CLOCK,reset=>RESET,gate=>GATE,settled=>SETTLED,envend=>MAXO,hold=>HOLDO,inc
=>enablecount,clear=>zerocount,state=>states);

STATE <= "00" when (states = idle) else
 "01" when (states = attack) else

 "10" when (states = sustain) else
 "11";

end archmultisegtop;

Page 2

MULTISEG.VHD
--multi segment controller ic

library ieee;
use ieee.std_logic_1164.all;

package counter_pkg is
component counter
port (

clk:in std_logic;
reset: in std_logic;
dout: inout std_logic_vector(2 downto 0);
enable:in std_logic;
clr:in std_logic
);

end component;
end counter_pkg;

library ieee;
use ieee.std_logic_1164.all;

library cypress;
use cypress.std_arith.all;
use cypress.lpmpkg.all;

entity counter is
port (

clk:in std_logic;
reset: in std_logic;
dout: inout std_logic_vector(2 downto 0);
enable:in std_logic;
clr:in std_logic
);

end;

architecture counter_arch of counter is
begin

sr:process(reset,clk)
begin

if(reset = '0') then
dout <= "000"; --reset the counter

elsif (clk'event and clk = '1') then
if(clr = '1') then

dout <= "000"; -- clear counter
elsif(enable = '1') then

dout <= dout +1; --increment counter
else

dout <= dout; --hold
end if;

end if;
end process;

end counter_arch;

Page 1

STATESEQ.VHD
--

-- State machine for multisegment envelope generator
--

library ieee;
use ieee.std_logic_1164.all;

package StateType_pkg is
type StateType is (idle,attack,sustain,release);
end StateType_pkg;

library ieee;
use ieee.std_logic_1164.all;
use work.StateType_pkg.all;

package statemachine_pkg is
component statemachine
port (

clk:in std_logic;
reset: in std_logic;
gate:in std_logic;
settled:in std_logic;
envend:in std_logic;
hold:in std_logic;
inc:out std_logic;
clear:out std_logic;
state:buffer StateType
);

end component;
end statemachine_pkg;

library ieee;
use ieee.std_logic_1164.all;

library cypress;
use cypress.std_arith.all;
use cypress.lpmpkg.all;
use work.statemachine_pkg.all;
use work.StateType_pkg.all;

entity statemachine is
port (

clk:in std_logic;
reset: in std_logic;
gate:in std_logic;
settled:in std_logic;
envend:in std_logic;
hold:in std_logic;
inc:out std_logic;
clear:out std_logic;
state:buffer StateType
);

end;

architecture statemachine_arch of statemachine is
signal current_state,next_state: StateType;
begin

state_clock:process(reset,clk)
begin

if(reset = '0') then
current_state <= idle;

Page 1

STATESEQ.VHD
elsif (clk'event and clk = '1') then

current_state <= next_state;
end if;

end process state_clock;
state_comb:process(current_state,gate,settled,envend,hold)
begin

case current_state is
when idle =>

if(gate = '1') then
next_state <= attack;
inc <= '1';
clear <= '0';

else
next_state <= idle;
inc <= '0';
clear <= '0';

end if;
when attack =>

if(gate = '0') then
next_state <= idle;
inc <= '0';
clear <= '1';

elsif (gate = '1') and (settled = '0') and (hold =
'0') then

next_state <= attack;
inc <= '0';
clear <= '0';

elsif (gate = '1') and (settled = '1') and (hold =
'0') then

next_state <= attack;
inc <= '1';
clear <= '0';

elsif (gate = '1') and (hold = '1') then
next_state <= sustain;
inc <= '0';
clear <= '0';

else
next_state <= attack;
inc <= '0';
clear <= '0';

end if;
when sustain =>

if(gate = '1') then
next_state <= sustain;
inc <= '0';
clear <= '0';

elsif (gate = '0') and (envend = '1') then
next_state <= idle;
inc <= '0';
clear <= '1';

elsif (gate = '0') and (envend = '0') then
next_state <= release;
inc <= '1';
clear <= '0';

else
next_state <= sustain;
inc <= '0';
clear <= '0';

end if;
when release =>

if(settled = '0') then
next_state <= release;
inc <= '0';

Page 2

STATESEQ.VHD
clear <= '0';

elsif(settled = '1') and (envend = '0') then
next_state <= release;
inc <= '1';
clear <= '0';

elsif(settled = '1') and (envend = '1') then
next_state <= idle;
inc <= '0';
clear <= '1';

else
next_state <= idle;
inc <= '0';
clear <= '0';

end if;
end case;

end process state_comb;
state <= current_state;

end statemachine_arch;

Page 3

compare3bit.vhd

-- 3 bit comparator

library ieee;
use ieee.std_logic_1164.all;

package compare_pkg is
component compare
port (

a:in std_logic_vector(2 downto 0);
b:in std_logic_vector(2 downto 0);
c:buffer std_logic
);

end component;
end compare_pkg;

library ieee;
use ieee.std_logic_1164.all;

library cypress;
use cypress.std_arith.all;
use cypress.lpmpkg.all;

entity compare is
port (

a:in std_logic_vector(2 downto 0);
b:in std_logic_vector(2 downto 0);
c:buffer std_logic
);

end;

architecture compare_arch of compare is
begin

c <= '1' when (a = b) else '0';
end compare_arch;

Page 1

	Before you build…
	Construction Options
	Front panel wiring.
	Gate Output Circuit
	Assembling the PC board
	Board Schematic
	Mux
	Led Driver
	Control Logic
	Aux Circuits

	Assembly Drawing
	Bill Of Materials
	Front Panel Schematic
	VHDL Code
	Counter
	State Machine
	Comparator

